Superconvergence and Reduced Integration in the Finite Element Method
نویسندگان
چکیده
The finite elements considered in this paper are those of the Serendipity family of curved isoparametric elements. There is given a detailed analysis of a superconvergence phenomenon for the gradient of approximate solutions to second order elliptic boundary value problems. An approach is proposed how to use the superconvergence in practical computations.
منابع مشابه
Impact of Integration on Straining Modes and Shear-Locking for Plane Stress Finite Elements
Stiffness matrix of the four-node quadrilateral plane stress element is decomposed into normal and shear components. A computer program is developed to obtain the straining modes using adequate and reduced integration. Then a solution for the problem of mixing straining modes is found. Accuracy of the computer program is validated by a closed-form stiffness matrix, derived for the plane rectang...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملThe Discrete Galerkin Method for Integral Equations
A general theory is given for discretized versions of the Galerkin method for solving Fredholm integral equations of the second kind. The discretized Galerkin method is obtained from using numerical integration to evaluate the integrals occurring in the Galerkin method. The theoretical framework that is given parallels that of the regular Galerkin method, including the error analysis of the sup...
متن کاملEfficiency of Anti-Hourglassing Approaches in Finite Element Method (TECHNICAL NOTE)
one of the simplest numerical integration method which provides a large saving in computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four different an...
متن کاملA novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کامل